Modification of the adaptive Nadaraya-Watson kernel regression estimator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Adaptive Nadaraya-watson Kernel Regression Estimators

Nonparametric kernel estimators are widely used in many research areas of statistics. An important nonparametric kernel estimator of a regression function is the Nadaraya-Watson kernel regression estimator which is often obtained by using a fixed bandwidth. However, the adaptive kernel estimators with varying bandwidths are specially used to estimate density of the long-tailed and multi-mod dis...

متن کامل

Nadaraya-Watson estimator for sensor fusion problems

The classical Nadaraya-Watson estimator is shown to solve a generic sensor fusion problem where the underlying sensor error densities are not known but a sample is available. By employing Haar kernels this estimator is shown to yield finite sample guarantees and also to be efficiently computable. TWO simulation examples, and a robotics example involving the detection of a door using arrays of u...

متن کامل

Nadaraya-Watson Estimator for Sensor Fusion

In a system of N sensors, the sensor S j , j = 1; 2 : : : ; N , outputs Y (j) 2 0; 1], according to an unknown probability density p j (Y

متن کامل

Weighted Nadaraya-Watson Regression Estimation

In this article we study nonparametric estimation of regression function by using the weighted Nadaraya-Watson approach. We establish the asymptotic normality and weak consistency of the resulting estimator for-mixing time series at both boundary and interior points, and we show that the estimator preserves the bias, variance, and more importantly, automatic good boundary behavior properties of...

متن کامل

Asymptotic properties of a Nadaraya-Watson type estimator for regression functions of infinite order∗

We consider a class of nonparametric time series regression models in which the regressor takes values in a sequence space and the data are stationary and weakly dependent. Technical challenges that hampered theoretical advances in these models include the lack of associated Lebesgue density and diffi culties with regard to the choice of dependence structure of the data generating process in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Research and Essays

سال: 2014

ISSN: 1992-2248

DOI: 10.5897/sre2014.6121